Abstract

Exchange-coupled spin qubits in semiconductor nanostructures are shown to be vulnerable to dephasing caused by charge noise invariably present in the semiconductor environment. This decoherence of exchange gate by environmental charge fluctuations arises from the fundamental Coulombic nature of the Heisenberg coupling and presents a serious challenge to the scalability of the widely studied exchange gate solid state spin quantum computer architectures. We estimate dephasing times for coupled spin qubits in a wide range (from 1 ns up to >1 micros) depending on the exchange coupling strength and its sensitivity to charge fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.