Abstract

The experimental electron density study of Ti(C(5)H(4)Me)(2)[(CH(2))(2)CMe(2)] provides direct evidence for the presence of (C-C)-->Ti agostic interactions. In accord with the model of Scherer and McGrady, the C(alpha)-C(beta) bond densities no longer show cylindrical symmetry in the vicinity of the Ti atom and differ markedly from those of the other C-C bonds. At the points along the C(alpha)-C(beta) bond where the deviation is maximal the electron density is elongated toward the metal center. The distortion is supported by parallel theoretical calculations. A calculation on an Mo complex in which the agostic interaction is absent supports the Scherer and McGrady criterion for agostic interactions. Despite the formal d(0) electron configuration for this Ti(IV) species, a significant nonzero population is observed for the d orbitals, the d orbital population is largest for the d(xy) orbital, the lobes of which point toward the two C(alpha) atoms. Of the three different basis sets for the Ti atom used in theoretical calculations with the B3LYP functional, only the 6-311++G** set for Ti agrees well with the experimental charge density distribution in the Ti-(C(alpha)-C(beta))(2) plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.