Abstract

Two isostructural CoII -based metal-organic frameworks (MOFs) with the opposite framework charges have been constructed, which can be simply controlled by changing the tetrazolyl or triazolyl terminal in two bifunctional ligands. Notably, the cationic MOF 2 can adsorb much more C2 H2 than the anionic MOF 1 with an increase of 88 % for C2 H2 uptake at 298 K in spite of more active nitrogen sites in 1. Theoretical calculations indicate that both nitrate and triazolyl play vital roles in C2 H2 binding and the C2 H2 adsorption isotherm confirms that the enhanced C2 H2 uptake for 2 (225 and 163 cm3 g-1 at 273 and 298 K) is exceptionally high for MOF materials without open metal sites or uncoordinated polar atom groups on the frameworks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call