Abstract

Separation of acetylene (C2 H2 ) from carbon dioxide (CO2 ) or ethylene (C2 H4 ) is industrially important but still challenging so far. Herein, we developed two novel robust metal organic frameworks AlFSIX-Cu-TPBDA (ZNU-8) with znv topology and SIFSIX-Cu-TPBDA (ZNU-9) with wly topology for efficient capture of C2 H2 from CO2 and C2 H4 . Both ZNU-8 and ZNU-9 feature multiple anion functionalities and hierarchical porosity. Notably, ZNU-9 with more anionic binding sites and three distinct cages displays both an extremely large C2 H2 capacity (7.94 mmol/g) and a high C2 H2 /CO2 (10.3) or C2 H2 /C2 H4 (11.6) selectivity. The calculated capacity of C2 H2 per anion (4.94 mol/mol at 1 bar) is the highest among all the anion pillared metal organic frameworks. Theoretical calculation indicated that the strong cooperative hydrogen bonds exist between acetylene and the pillared SiF6 2- anions in the confined cavity, which is further confirmed by in situ IR spectra. The practical separation performance was explicitly demonstrated by dynamic breakthrough experiments with equimolar C2 H2 /CO2 mixtures and 1/99 C2 H2 /C2 H4 mixtures under various conditions with excellent recyclability and benchmark productivity of pure C2 H2 (5.13 mmol/g) or C2 H4 (48.57 mmol/g).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call