Abstract

Lipophosphoglycans (LPGs) are found on the surface of Leishmania, a protozoan parasite, and are immunologically important. Herein, disaccharide 1-phosphate repeating units of LPGs were successfully synthesized on a solid support with high anomeric purity using a disaccharide α-1-phosphoramidite building block. To enhance solubility in the reaction solvent, hydroxy-protecting groups in the form of para-t-butylbenzoyl were introduced to the building block. The saccharide chain was elongated via stable glycosyl boranophosphate linkages, followed by the conversion of inter-sugar linkages to phosphodiester counterparts using an oxaziridine derivative. The addition of a silylating reagent post-reaction with the oxaziridine derivative efficiently facilitated the conversion of boranophosohodiesters to phosphodiesters. This method enabled the α-selective synthesis of up to 15 repeating units, marking the longest homogeneous repeating units of LPGs synthesized chemically. Given the chain length equivalence to native LPGs, the method developed herein holds promise for advancing anti-Leishmanial pharmaceuticals and vaccines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.