Abstract

The nature of the charge carriers in 2D few-layer graphites (FLGs) has been recently questioned by transport measurements [K. S. Novoselov, Science 306, 666 (2004)10.1126/science.1102896] and a strong ambipolar electric field effect has been revealed. Our density functional calculations demonstrate that the electronic band dispersion near the Fermi level, and consequently the nature of the charge carriers, is highly sensitive to the number of layers and the stacking geometry. We show that the experimentally observed ambipolar transport is only possible for an FLG with a Bernal-like stacking pattern, whereas simple-carrier or semiconducting behavior is predicted for other geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.