Abstract

Ground-based testbeds play a critical role in developing and testing different methods of spacecraft dynamics and control. To find the dynamic behavior in such an air-bearing testbed, a detailed characterization of the testbed must be provided via systematic testing approaches. This paper describes a planar air-bearing testbed to develop control methods in spacecraft on-orbit operations. This testbed has an almost frictionless surface and can be used to simulate two-dimensional motions in the microgravity environment, with one rotational and two translational degrees of freedom (DOF). The hardware and software architectures of the testbed are presented in detail and key parameters are characterized by a series of systematic test approaches. In addition, a new visual navigation method was designed as an alternative to the external visual system. Finally, two typical case studies are presented to demonstrate the performance of the developed testbed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.