Abstract

This paper presents the characterization of Flexural Strength, Warpage and Shrinkage of reinforcement gigantochloa scortechinii fibre. The content of fiber were fixed at 0 wt.%, 3 wt.% and 6 wt.% in uniform increased. The selected injection moulding processing conditions were packing pressure, melt temperature, screw speed and filling time. The quality factors that need to be improved upon the characterization were flexural strength, warpage and shrinkage. This research started by drying the Gigantochloa Scortechinii fibres at 120°C. After that, 3 wt.% of the fibres were mixed with 81 wt.% of polypropylene, 15 wt.% of polypropylene grafted maleic anhydride (compatibilizer) and 1 wt. % of nanoclay. Samples with 6 wt.% of fibers were also prepared for comparison purpose. The mixing process was performed by using Brabender Lab-Compounder KETSE 20/40 and the pallets were produced using used Brabender® pelletizer with diameters of 1 to 4 mm. The optimisation process was accomplished by adopting the Taguchi L9 orthogonal array method. According to the results, for 0 wt.% GS, the flexural strength is 30.0082 MPa, the warpage is 0.0030000 mm and the shrinkage is 0.0003830 mm at packing pressure 40%, melt temperature 165°C, filled time 2 seconds and screw speed 35%. For the result 3 wt.% GS, the flexural strength is 32.2477 MPa, the warpage is 0.006670 mm and the shrinkage is 0.0003830 mm at packing pressure is 35%, melt temperature 165°C, filled times is 1 seconds and screw speed is 30%. While for the 6 wt.% GS, the results of the flexural strength is 36.9084 MPa, the warpage is 0.0066700 mm and the shrinkage is 0.0003830 mm at packing pressure is 35%, melt temperature 165°C, filled time is 2 seconds and screw speed is 30%. The existence of Gigantochloa Scortechinii fibre was also proven to effect significantly towards flexural strength with 6% increasing value ordering from 0 wt.% GS to 6 wt.% GS. while, the warpage value increasing from 0.003000 mm to 0.00667 mm and the shrinkage was state remain same value for 0, 3 and 6 wt.% of GS causes the result difference 0.000001 for each. In conclusion, the charactization of the flexural strength, the warpage and the shrinkage of the polypropylene-nanoclay-Gigantochloa Scortechinii had been achieved, and the existence of fibre obviously giving a promising manufacturing opportunity to improve the quality of the injected moulding products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.