Abstract

To help understand and predict nanotube interactions, the electrostatic potentials on both the outer and the inner surfaces of 10 single-walled model systems have been computed at the Hartree−Fock STO-5G//STO-3G level. All structures were optimized computationally. Both carbon and boron/nitrogen tubes were studied, including the open and closed (5,5) and the open (6,1), (7,1), and (8,1), plus fullerene for comparison. Hydrogen atoms were introduced at the ends of the open tubes, to satisfy the unfulfilled valencies. The surface potentials were characterized in terms of both site-specific and global properties: positive and negative extrema and average values, average deviation, positive and negative variances, and electrostatic balance. The all-carbon systems, the closed (5,5) and fullerene, are very weakly positive on most of the outer and all of the inner surfaces, the latter potentials being somewhat stronger. In contrast, the open carbon tubes with charge-donating hydrogens at the ends are slightly n...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.