Abstract

Enzyme linked immunosorbent assay (ELISA) was used for the analysis of tetracycline, chlortetracycline, oxytetracycline, and their transformed compounds in environmental water samples. The antibodies employed in ELISA showed high relative affinity for tetracycline, epitetracycline, chlortetracycline, and epichlortetracycline as compared to anhydrotetracycline, epianhydrotetracycline, and anhydrochlortetracycline. The specificity and crossreactivity of these antibodies are discussed in relation to the electrostatic potentials and average local ionization energies computed on the molecular surfaces of tetracycline antibiotics and their transformed compounds with an objective of identifying common features as well as differences that may be related to the experimentally observed variation in cross-reactivity values. The computations were performed at both the HF/STO-3G and HF/6-31+G* levels using the Gaussian 98 program. The results in this study are based upon molecular electrostatic potentials and local ionization energies computed on isodensity molecular surfaces. The surface electrostatic potentials are characterized in terms of a group of statistically defined quantities, which include the average deviation, the positive, negative, and total variances, positive and negative surface extrema, and a parameter indicating the degree of electrostatic balance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.