Abstract

Different SiC thermal oxide passivation techniques were characterized using UV-induced hysteresis to estimate the fixed charge, Qf, and interface-trapped charge, Qit. Steam-grown oxides have a fixed charge density of Qf=-1x1012 cm-2, and a net interface-trapped charge density of Qit=4x1011cm-2. Addition of a thin low-pressure chemical-vapor deposited (LPCVD) silicon nitride layer decreased these parameters to Qf=-2x1011 cm-2 and Qit=4x1010 cm-2. Dry oxide shows a fixed charge density, Qf=-3x1012 cm-2 and interface-trapped charge density, Qit=4x1011 cm-2 which changes to Qf=+7x1010 cm-2 and Qit=1x1010 cm-2 with the addition of a LPCVD silicon nitride cap. Dry thermal oxide with a silicon nitride cap was used to passivate SiC MESFETs to achieve a power-added efficiency of 60% in pulsed operation at 3 GHz in Class AB bias conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call