Abstract

Chitosan (CS) and sodium alginate (SA) are two widely popular biopolymers which are used for biomedical and pharmaceutical applications from many years. The objective of present study was to study the effect of biofield treatment on physical, chemical and thermal properties of CS and SA. The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. The control and treated polymers were characterized by Fourier transform infrared (FT-IR) spectroscopy, CHNSO analysis, X-ray diffraction (XRD), particle size analysis, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). FT-IR of treated chitosan showed increase in frequency of –CH stretching (2925→2979 cm- 1) vibrations with respect to control. However, the treated SA showed increase in frequency of –OH stretching (3182→3284 cm-1) which may be correlated to increase in force constant or bond strength with respect to control. CHNSO results showed significant increase in percentage of oxygen and hydrogen of treated polymers (CS and SA) with respect to control. XRD studies revealed that crystallinity was improved in treated CS as compared to control. The percentage crystallite size was increased significantly by 69.59% in treated CS with respect to control. However, treated SA showed decrease in crystallite size by 41.04% as compared to control sample. The treated SA showed significant reduction in particle size (d50 and d99) with respect to control SA. DSC study showed changes in decomposition temperature in treated CS with respect to control. A significant change in enthalpy was observed in treated polymers (CS and CA) with respect to control. TGA results of treated CS showed decrease in Tmax with respect to control. Likewise, the treated SA also showed decrease in Tmax which could be correlated to reduction in thermal stability after biofield treatment. Overall, the results showed that biofield treatment has significantly changed the physical, chemical and thermal properties of CS and SA.

Highlights

  • Pharmaceutical scientists have used polymers in every aspect of their work; for example polystyrene vials, rubber closures, plastic tubing for injection sets, and polyvinylchloride flexible bags to hold blood and intravenous solutions

  • These results indicated that biofield energy was making the hydrogen bond weaker facilitating the combustion of hydrogen

  • This research work showed the impact of biofield treatment on physicochemical and thermal properties of CS and sodium alginate (SA)

Read more

Summary

Introduction

Pharmaceutical scientists have used polymers in every aspect of their work; for example polystyrene vials, rubber closures, plastic tubing for injection sets, and polyvinylchloride flexible bags to hold blood and intravenous solutions. The highly hydrophilic nature and short half-life (elimination half-life 2-3 hour) of drugs causes them to readily absorbed and eliminated [2]. This requires frequent dosing that lead to a decrease in patient compliance and further increase chances of severe side effects due to dose dumping [3]. This warrants extensive research to alleviate these drug side effects by fabricating novel polymer-based drug delivery devices

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call