Abstract

Despite chronic fibrosis occurring in many pathological conditions, few in vitro studies examine how fibrosis impacts lymphatic endothelial cell (LEC) behavior. This study examined stiffening profiles of PhotoCol®—commercially available methacrylated type I collagen—photo-crosslinked with the photoinitiators: Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), Irgacure 2959 (IRG), and Ruthenium/Sodium Persulfate (Ru/SPS) prior to evaluating PhotoCol® permeability and LEC response to PhotoCol® at stiffnesses representing normal and fibrotic tissues. Ru/SPS produced the highest stiffness (~6 kilopascal (kPa)) for photo-crosslinked PhotoCol®, but stiffness did not change with burst light exposures (30 and 90 s). The collagen fibril area fraction increased, and dextran permeability (40 kilodalton (kDa)) decreased with photo-crosslinking, showing the impact of photo-crosslinking on microstructure and molecular transport. Human dermal LECs on softer, uncrosslinked PhotoCol® (~0.5 kPa) appeared smaller with less prominent vascular endothelial (VE)-cadherin (cell–cell junction) expression compared to LECs on stiffer PhotoCol® (~6 kPa), which had increased cell size, border irregularity, and VE-cadherin thickness (junction zippering) that is consistent with LEC morphology in fibrotic tissues. Our quantitative morphological analysis demonstrates our ability to produce LECs with a fibrotic phenotype, and the overall study shows that PhotoCol® with Ru/SPS provides the necessary physical properties to systematically study LEC responses related to capillary growth and function under fibrotic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.