Abstract

In this study we aimed to (1). screen phenothiazines for cytotoxic activity in glioma, neuroblastoma, and primary mouse brain tissue; and (2). determine the mechanism of the cytotoxic effect (apoptosis, necrosis) and the roles of calmodulin inhibition and sigma receptor modulation. Rat glioma (C6) and human neuroblastoma (SHSY-5Y) cell lines were treated with different phenothiazines. All agents induced a dose-dependent decrease in viability and proliferation, with the highest activity elicited by thioridazine. Sensitivity to thioridazine of glioma and neuroblastoma cells was significantly higher (p < 0.05) than that of primary mouse brain culture (IC50 11.2 and 15.1 microM vs 41.3 microM, respectively). The N-mustard fluphenazine induced significantly lower cytotoxicity in glioma cells, compared to fluphenazine. The sigma receptor selective ligand (+)-SK&F10047 increased viability slightly while combined with fluphenazine; SK&F10047 did not alter fluphenazine activity. Flow cytometry of propidium iodide (PI)-stained glioma cells treated with thioridazine, fluphenazine, or perphenazine (6-50 microM) resulted in a concentration-dependent increase of fragmented DNA up to 94% vs 3% in controls by all agents. Thioridazine (12.5 microM)-treated glioma cells costained with PI and Hoechst 33342 revealed a red fluorescence of fragmented nuclei in treated cells and a blue fluorescence of intact control nuclei. After 4-h exposure to thioridazine (25 and 50 microM), a 25- to 30-fold increase in caspase-3 activity in neuroblastoma cells was noted. Overall, the marked apoptotic effect of phenothiazines in brain-derived cancer cells, and the low sensitivity of primary brain tissue suggest the potential use of selected agents as therapeutic modalities in brain cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call