Abstract

Upon injury to the CNS, astrocytes undergo morphological and functional changes commonly referred to as astrocyte reactivity. Notably, these reactive processes include altered expression of factors that control immune processes and neuronal survival, as well as increased expression of the CXCL12 receptor, CXCR7/ACKR3. We now asked whether these events are related in that the astrocytic CXCL12 system modulates immune responses and/or neuronal survival. Short-term exposure of astrocytes cultured from the postnatal rat cortex to CXCL12 prominently increased the expression of serpine1/PAI1 on the mRNA level, but showed either no or only minor effects on the expression of additional reactive genes, selected from previous array studies. CXCL12-induced increases in PAI1 protein levels were only detectable in the additional presence of chemokines/cytokines, suggesting that translation of serpine1 mRNA depends on the cooperation of various factors. As expected, expression of most of the selected genes increased after acute or chronic activation of astrocytes with either LPS or a combination of IL-1β and TNFα. CXCL12 partially attenuated expression of some of the LPS and IL-1β/TNFα-induced genes under acute conditions, in particular those encoding CXCL9, CXCL10, CXCL11, and CCL5. Taken together, these findings argue for the involvement of the astrocyte CXCL12 system in the control of the immune response of the injured CNS, where it may control distinct steps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.