Abstract
Optimum conditions for generating Leishmania ( Leishmania) tropica axenic amastigotes (AxA) in culture were determined, pH 5.5/36 °C, and the parasites characterized by different techniques, including light microscopy, macrophage infection, stage specific antigen expression and differential display. AxA were morphologically similar to amastigotes and 15.5-fold more infective than stationary phase promastigotes for mouse peritoneal macrophages. Western blotting with promastigote stage specific monoclonal antibodies to either lipophosphoglycan (T2) or a 60 kDa flagella antigen (F3) showed a dramatic decrease in antigen expression when AxA were compared to promastigotes. Similarly F3 gave strong immune fluorescent staining of the promastigote flagellum, but no fluorescence was detected when AxA were examined. Conversely, Western blotting with the amastigote specific monoclonal antibody (T16) showed that this antigen is more highly expressed in AxA than promastigotes. Differential display-PCR was used to identify several parasite genes showing stage specific expression. One gene selectively expressed by AxA was partially sequenced and identified as Leishmania ( L.) tropica amastin. Amastigote specific expression of this gene was further confirmed by reverse transcriptase-PCR (RT-PCR) using AxA and infected macrophages. No amastin expression was observed with promastigotes. Expression of the cysteine protease B ( cpb) and protein kinase A catalytic isoform 1 subunit ( pkac1) in promastigotes and AxA was also examined by RT-PCR. Pkac1 was strongly expressed by promastigotes, while cpb expression was only seen with AxA or infected macrophages. L. ( L.) tropica AxA will prove useful for further studies on parasite differentiation and gene regulation, as well as for drug screening.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have