Abstract

This paper describes a technique for characterizing strains and stresses induced in vivo in the rat tibia during application of an external four-point bending load. An external load was applied through the muscle and soft tissue with a four-point bending device, to induce strain in a 11 mm section of the right tibiae of ten adult female Sprague-Dawley rats. Induced strains were measured in vivo on the lateral surface of the tibia. Inter-rat difference, leg positioning and strain gage placement were evaluated as sources of variability of applied strains. Beam bending theory was used to predict externally induced in vivo strains. Finite element analysis was used to quantify the magnitude of shear stresses induced by this type of loading. There was a linear relationship between applied load and induced in vivo strains. In vivo strains induced by external loading were linearly correlated ( R 2=0.87) with the strains calculated using beam bending theory. The finite element analysis predicted shear stresses at less than 10% of the longitudinal stresses resulting from four-point bending. Strains predicted along the tibia by finite element analysis and beam bending theory were well-correlated. Inter-rat variability due to tibial size and shape difference was the most important source of variation in induced strain (CV=21.6%). Leg positioning was less important (CV=9.5%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.