Abstract

A combined analytical and experimental approach is presented to characterize both mode-II and mixed mode fracture of Carbon fiber-reinforced polymer-concrete bonded interfaces under four-point bending load, and closed-form solutions of compliance and energy release rate of the mode-II (four-point symmetric end-notched flexure) and mixed (four-point asymmetric end-notched flexure) mode fracture specimens are provided. The transverse shear deformation in each sub-layer of bi-material bonded beams is included by modeling each sub-layer as an individual first order shear deformable beam, and the effect of interface crack tip deformation on the compliance and energy release rate are taken into account by applying the interface deformable bi-layer beam theory (i.e., the flexible joint model). The improved accuracy of the present analytical solutions for both the compliance and energy release rate is illustrated by comparing with the solutions predicted by the conventional rigid joint model and finite element analysis. The fracture of Carbon fiber-reinforced polymer-concrete bonded interface is experimentally evaluated using both the four-point symmetric and asymmetric end-notched flexure specimens, and the corresponding values of critical energy release rates are obtained. Comparisons of the compliance rate-changes and resulting critical energy release rates based on the rigid joint model, the present theoretical model, and numerical finite element analysis demonstrate that the crack tip deformation plays an important role in accurately characterizing the mixed mode fracture toughness of hybrid material bonded interfaces under four-point bending load. The improved solution of energy release rates for the four-point symmetric and asymmetric end-notched flexure specimens by the flexible joint model can be used to effectively characterize hybrid material interface, and the fracture toughness values obtained for the Carbon fiber-reinforced polymer-concrete interface under mode-II and mixed mode loading can be employed to predict the interface fracture load of concrete structures strengthened with composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call