Abstract

In this paper we present an experimental study of SOI UTBB n-MOSFETs at cryogenic temperatures. The device employs fully silicided source/drain with dopant segregation formed by “Implantation Into Silicide” (IIS) process. The impact of the back-gate (Vback) on the device performance is systematically investigated. The results demonstrate that Vback is essential to tune the threshold voltage Vth. And optimization of Vback values can improve the subthreshold swing (SS), Drain-Induced Barrier Lowering (DIBL), transconductance Gm and mobility at cryogenic temperatures, providing a potential to fulfill the ultra-low power requirement for quantum computing application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.