Abstract
Dipole defects in gamma-irradiated and thermal treated MgAl2O4 samples have been studied through thermally stimulated depolarisation currents(TSDC) technique and computer modelling methods. The presence of TSDC bands varies from sample to sample and some crystals do not present any band. The origin of these bands has been investigated in several different samples. In the spectra of spinels showing TSDC peaks, three bands at 130K, 160K and 320K are observed. The peaks at 130K and 160K have been attributed to dipole defects. After 1200kGy of gamma irradiation the broad band at 320K dislocates to 290K and increases ten times. Pulsed thermal treatments between 350K and 470K produce a progressive reduction of the peak area and a shift in the peak position back to 320K. A detailed analysis of the curve indicates the possibility of a superposition of peaks. Gamma irradiation restores the 320K TSDC peak. Taking into account optical absorption(OA) and electron paramagnetic resonance(EPR) results, the thermal reduction of the 320K TSDC band was attributed to V-type centres as a result of hole trapping at tetrahedral and octahedral cation vacancies. Computer modelling methods, based on lattice energy and defect minimisation, were applied to identify dipole defects that occur in these crystals. The calculations were made in normal and inverse spinel structures, doped with Cr, Co, Mn and Fe in order to justify the presence of dipole bands. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have