Abstract

Multifocal intraocular lenses incorporate a variety of design considerations, including dimensioning of the base monofocal shape and the diffraction grating. While studying three different lens models, we present a practical approach for mathematical modelling and evaluation of these geometries. Contrary to typical lens measurement methods, non-contact measurements were performed on the Alcon SN6AD1, HumanOptics MS 612 DAY and the AMO ZMA00 lenses using a confocal microscope. Subsequent data processing includes centering, tilting correction, filtering and an algorithmic decomposition into a conic and polynomial part and the diffraction grating. Lastly, evaluation of fitting parameters and grating shape is done to allow for inferences about further optical properties. Results and analysis show the confocal microscope to be a suitable imaging method for lens measurements. The processing of this data enables the reconstruction of the annular diffraction grating over the complete lens diameter. Apodization, near addition and diffraction efficiency characteristics are found utilizing the grating shape. Additionally, near-optical axis curvature, asphericity and higher order polynomials are identified qualitatively from the reconstruction of the monofocal base form. Derived properties also include the lens optical base and addition power. By making use of the surface geometries, as well as the lens’ material and thickness, a full lens model can be created for further studies. In summary, our analytical approach enables the insight to various intraocular lens design decisions. Furthermore, this procedure is suitable for lens model creation for research and simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call