Abstract

Shikonin is a red naphthoquinone natural product from plants with high economical and medical values. The para-hydroxybenzoic acid geranyltransferase (PGT) catalyzes the key regulatory step of shikonin biosynthesis. PGTs from Lithospermum erythrorhizon have been well-characterized and used in industrial shikonin production. However, its perennial medicinal plant Arnebia euchroma accumulates much more pigment and the underlying mechanism remains obscure. Here, we discovered and characterized the different isoforms of AePGTs. Phylogenetic study and structure modeling suggested that the N-terminal of AePGT6 contributed to its highest activity among 7 AePGTs. Indeed, AePGT2 and AePGT3 fused with 60 amino acids from the N-terminal of AePGT6 showed even higher activity than AePGT6, while native AePGT2 and AePGT3 don't have catalytic activity. Our result not only provided a mechanistic explanation of high shikonin contents in Arnebia euchroma but also engineered a best-performing PGT to achieve the highest-to-date production of 3-geranyl-4-hydroxybenzoate acid, an intermedium of shikonin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.