Abstract
Novel metal oxide films and new metal gates are currently being developed for future generations of Si based field-effect transistors as the SiO 2 gate dielectric and polycrystalline Si gate electrode are reaching scaling limits. These gate stacks are often comprised of sub-nanometer layers. Device properties are increasingly controlled by the complex structure and chemistry of interfaces between the layers. Electron energy-loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM) is capable of providing insights into interfacial chemistry and local atomic structure with a spatial resolution unmatched by any other technique. Using gate stacks with Hf-silicate dielectrics as examples, we demonstrate the capabilities of STEM/EELS for analyzing the interfacial chemistry of novel gate stacks. We show that a priori unknown reaction layers of a few Å thickness can be detected and identified even in the presence of substantial interfacial roughness that may obscure such layers in a high-resolution image. We discuss some experimental aspects of STEM/EELS chemical profiling applied to gate stacks and the factors affecting the interpretation. In particular, the effects of interfacial roughness, beam spreading, elemental analysis in a heavily scattering matrix, and the interpretation of the EELS core-loss fine-structures from ultrathin layers are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electron Spectroscopy and Related Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.