Abstract

Drug delivery is a promising technique to enhance the therapeutic efficacy of the drug. However, properties of carrier materials require intense improvement for effective transport of drug molecules. In the current study, attempts have been made to develop freeze dried gelatin matrices cross linked with genipin at various temperatures (5 °C, 15 °C and 25 °C) prior to freeze-drying (−80 °C). The freeze dried matrices thus obtained at the said temperatures are characterized for crosslinking density, compression strength, swelling behaviors. The matrix crosslinked at 25 °C showed highest Flory–Rehner crosslinking density (467 ± 46) ( p < 0.05), highest compressive strength (12.36 ± 0.12) ( p < 0.05) and lowest equilibrium water content. In this context, scanning electron microscopy (SEM) was performed to study the surface morphology (size and shape of pores) of the crosslinked matrices. These images were further processed for quantitative analysis of morphological features, viz., areas, radius, ferret diameter, length of major and minor axis and eccentricity using MATLAB toolboxes. These quantitative analyses correlate transport and the release kinetics of model anti-inflammatory drug (indomethacin) from crosslinked matrices in vitro to tune as a controllable delivery system. The diffusional exponent ( n) for all constructs ranging from 0.61 to 0.69 ( p < 0.05) (0.45 < n < 0.89) indicated non-Fickian release kinetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call