Abstract

Two-dimensional (2D) materials have gained significant attention as potential candidates for next-generation electronics, owing to their unique properties such as ultrathin layer thickness, mechanical flexibility, and tunable bandgaps. The distinctive characteristics of 2D materials necessitate the development of nanoscale advanced characterization methods. In this review, we explore the role of microscopy techniques in developing 2D materials-based electronics, from material synthesis and characterization to device performance and reliability. We address the applications of microscopies by delving into the perspectives of channel materials, metal contacts, dielectric materials, and device architectures. Additionally, we provide an outlook on the future directions and potential utilization of microscopy techniques in future 2D semiconductor industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.