Abstract
In this work was described poly(d,l-lactide) microwave synthesis using tin(II) 2-ethylhexanoate initiated ring-opening polymerization. Polymerization was performed at 100 °C with monomer to initiator molar ratio ([M]/[I]) of 5,000 in 30 min. The achieved number average molar mass of obtained polymers (determined by gel permeation chromatography) was 102,320 g/mol, with the polydispersion index, Q, 2.80. Structural characterization was performed by FT-IR spectroscopy followed characteristic bands. For applicative purposes the obtained polymer was purified during the procedure of microsphere preparation. Biodegradable microspheres prepared from poly(d,l-lactide) have been widely studied in recent years and have become well established controlled drug delivery systems. In this work microspheres were loaded with allyl thiosulfinate (allicin) and its transforments products (ajoene and vinyldithiine), as pharmacological active substances. The morphology of the microspheres was analyzed using a scanning electron microscope. Allicin was synthesized by acid oxidation of allyl disufide and purification of obtained products by liquid–liquid extraction with diethyl ether. Obtained allicin, purity 73%, was transformed using microwave in acetone solution, at solvent boiling temperature, for 5 min. For the quality and quantity analysis of allicin and its transformation process was used LC/MS chromatography. (E)- and (Z)-ajoene were detected at retention time 3.1 and 3.3 min, respectively, whence 3-vynil-4H-1,2-dithiine and 2-vynil-4H-1,3-dithiine were detected at 4.3 and 4.8 min, respectively. Retention time of allicin was 2.93 min, according to liquid chromatography results. HPLC method was used for assessment of pharmaceutical substances (alicine and alicine transforments) releasing from microspheres at room temperature in solutions with different pH (pH = 3 and pH = 8) for 24 h.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have