Abstract

A technique is presented to determine the effective process and design-related parameters from the high-current I-Vcharacteristics of NMOSTs, for use in the development of electrostatic discharge (ESD) protection circuits. Test structures from a fully salicided, LDD MOS process were characterized with a transmission line pulse generator to obtain the snapback voltages and the second-breakdown trigger currents (I/sub t2/) Good correlations are shown between I/sub t2/ and the human body model (HBM) ESD damage thresholds. It was seen that homogeneous current injection in the avalanching diffusions is imperative for good second breakdown behavior. A simplified thermal model, with second breakdown as the boundary condition for damage, was used in the extraction of the effective junction depth, depletion width, and transistor width under high-current conditions. Experimental data obtained for the power-to-failure as a function of the time-to-failure showed a good fit to the model. A possible extension of the technique for the use of DC characterization to monitor ESD behavior is presented.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.