Abstract
In this article, we present a multi-fluid numerical model developed for application on electron cyclotron resonance ion sources (ECRIS). The 1D-model is matured to compute the density of the ion species in the plasma sheath in the presence of an inhomogeneous magnetic field of a 2.45 GHz ECRIS. The multi-fluid model in cylindrical coordinates is focused on solving the continuity and momentum equations of hydrogen plasma particles to characterize their sheath properties. In addition, 28 important processes, including volume and surface collisions, have been included in the COMSOL Multiphysics package to simulate the ECR plasma. We study the elementary processes containing electron–atom, electron–molecule, atom–molecule, molecule–molecule, and particle–wall interactions. Then, the results of the model and the simulation of a 2D-hydrogen plasma are reported, and future perspectives are discussed throughout the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.