Abstract

To resolve the issue of sewage fluctuation and discontinuity in a rural district of China, a new operation mode of replenishing the mixture of fermentation liquor and tail water during the off-flow period was proposed, and the nutrient removal performance of a pilot-scale A2/O system with this operation mode was investigated. The results of beaker experiments found that the mixture of tail water and fermentation liquor at a ratio of 12:1 had better denitrification and phosphorus release/absorption characteristics than the raw water, and theoretically had the function of enhancing denitrification and phosphorus removal performances. The results of a 97 d pilot test showed that the removal efficiency of TN and TP was improved after the system was adjusted from the constant flow mode to this new operation mode, and the average removal rate of TN and TP increased from 69.27% and 86.94% to 73.34% and 89.94%, respectively. The corresponding average effluent concentration decreased from 15.77 mg·L-1 and 0.80 mg·L-1 to 13.76 mg·L-1 and 0.64 mg·L-1. The sequencing results of the 16S rRNA gene showed that this new operation mode was beneficial to the enrichment of five common hydrolytic acidizing bacteria genera, six phosphorus-accumulating organisms genera, and four denitrifying bacteria genera. This was also the main reason for the improved nutrient removal performance. According to the long-term monitoring of the characteristics of activated sludge, this new operating mode will degrade the sedimentation performance of activated sludge in the system, and the average SVI increased from 106 mL·g-1 to 131 mL·g-1. However, this degree of deterioration did not adversely affect the sludge activity and nutrients removal performance of the system, and there was no sludge bulking in the entire experiment. The results of this study have shown that the A2/O system can maintain and improve the performance of nutrients removal by replenishing the mixture of tail water and sludge fermentation liquor when the flow is cut off. This will provide new ideas for the design and operation of sewage treatment plants in rural areas in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.