Abstract

A nano-floating gate memory structure with a controllable large threshold voltage window using the Fowler–Nordheim (FN) tunneling program and erasing is proposed. This structure has multiple dot layers composed of a uniform single alloy dot layer in the surrounding silicon dioxide layer and a uniform interoxide layer between these dot layers. Here, we confirmed that multiple alloy FePt nanodot layers provide more charge storage than a single layer, which gives a larger memory window. Thus, multiple nanodot layers can store more charges corresponding to the number of layers with the optimization of several parameters, such as blocking oxide layer thickness. In addition, high operation voltages, low operation speeds due to a thick blocking oxide layer, and the poor retention related to the device structure were revealed, and the improvement of this issue was also discussed. Despite several issues, it is expected that a multiple FePt nanodot memory using FN tunneling will be a candidate structure for a future flash memory because of its larger memory window.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.