Abstract

Device characteristics and hot-carrier-induced device degradation of n-channel MOS transistors with an off-state breakdown voltage of approximately 25 V and various Si recess depths introduced by sidewall spacer overetching are investigated. Experimental data show that the depth of the Si recess has small effects on device characteristics. A device with a deeper Si recess has lower substrate current and channel electric field, whereas a greater hot-carrier-induced device degradation and a shorter hot-carrier lifetime are observed. Results of technology computer-aided design simulations suggest that these unexpected observations are related to the severity of plasma damage caused by the sidewall spacer overetching and the difference in topology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.