Abstract

Activated persulfate and hydrothermal treatment (HTT) are often employed to treat waste activated sludge, which can improve the efficiency of subsequent sludge treatment and change the distribution of pollutants in the sludge. However, the impact of sludge solid content and temperature on the occurrence and aging of microplastics (MPs) during HTT remains poorly understood. This study investigated the effects of persulfate-HTT (SPS-HTT) co-treatment on the migration, occurrence, and aging of MPs in sludge with different solid contents (2% and 5% solid content). The results indicated that SPS-HTT co-treatment triggers both the disruption of sludge flocs and the melting deformation of MPs at high temperatures, leading to variations in the increasing trend of MP concentration in the solid-liquid phase at different solid contents. 5% solid content sludge showed a weak release of MPs from the solid phase. The proportion of fiber MPs first increased and then decreased with increasing temperature, while no significant changes were observed in the color and type of MPs. Higher temperature and solid content induced the melting deformation of MPs, exacerbated the aging of polypropylene MPs, and resulted in rough surfaces, higher carbonyl index, and variations in crystallinity. Moreover, the correlation between the carbonyl index and aging indicators increased with increasing solid content. The MP-derived dissolved organic matter under HTT primarily comprised soluble microbial by-products and humic acid-like substances. These findings underscore the significance of sludge solid content in affecting the migration and aging of MPs during HTT, and offer novel insights into the application of HTT to MP management in sludge treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.