Abstract
A light electric vehicle (LEV) equipped a hybrid power system has been developed in the present work. The hybrid power system consisted of a proton exchange membrane (PEM) fuel cell and a lithium-ion battery. The former serves the major propulsion power, while the later takes some of the peak power requirement as well as allows regenerative braking. First, major components of the hybrid power system such as a fuel cell stack, a membrane humidifier, a lithium-ion battery pack, a microcontroller, a DC/DC converter, and hydrogen storage canisters (HSCs) are developed and verified. Special attention will be placed on the implementation of the stack-humidifier assembly and the hydrogen storage canister. Then, a breadboard test to assess the efficiency of the hybrid power system is provided. Subsequently, a driving test and demonstration of the hybrid LEV is carried out. Finally, the proportion of power from the fuel cell and the lithium-ion battery is analyzed under various driving conditions such as idle, starting, acceleration, and braking. Results of this work might help directing future studies on the hybrid power system in the most promising way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.