Abstract

AbstractWater base copper nanofluids having concentrations varying from 0·001 to 0·1 vol.-% were prepared and used as quench media for immersion quenching. Cooling curve analyses were carried out by using a standard ISO/DIS 9950 quench probe. An inverse heat conduction model is employed to estimate the metal/nanoquenchant interfacial heat flux transients from the measured temperature field and thermophysical properties of the quench probe material. The addition of copper nanoparticles had a significant effect on the occurrence of the vapour blanket stage and nucleate boiling stage. Furthermore, all six cooling curve parameters were found to be altered by adding nanoparticles to water. The contact angle of water decreased from 67 to 39° by adding 0·1 vol.-% of copper nanoparticles indicating the improved wettability of nanofluids. The heat flux curve shows a maximum initially then drops rapidly during quenching. The peak cooling rate and heat flux of water increased by adding copper nanoparticles up to 0·0...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call