Abstract

AbstractKobasko et al. have primarily shown that rapid water quenching can create compressive residual stresses near the surface and thereby a significant increase in the fatigue-limit (Intensive Quenching). Such processes result in an increase in hardness. Depending on steel grade, dimensions of the component and quenching intensity through hardening or only shell hardening will result. In this work, shell hardening processes were investigated in a more detailed manner for cylinders made of two different unalloyed steels. The goal of the work was discovering the general requirements to reach, on the one hand, a sufficient surface hardness paired with a non-through hardened hardening profile. On the other hand, compressive residual stresses in the near surface area should be as high as possible to achieve huge lifetime cycles for the heat treated work pieces. The experiments were carried out with a device that was especially developed for high speed quenching. As a quenching medium only tap water or water...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call