Abstract

This chapter presents the plate theory of Mindlin and its underlying assumptions. The governing plate equations and the boundary conditions are derived using the Hamilton's principle. Also highlighted herein is the existence of an exact relationship between the frequencies of the classical thin (Kirchhoff) plates and Mindlin plates of polygonal shape. The relationship allows one to obtain the vibration frequencies of Mindlin plates from widely available Kirchhoff plate solutions. The shear correction factor required in the Mindlin plate theory is discussed. The implementation of Mindlin plate theory into the Ritz method is detailed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.