Abstract

Stroke is one of the common causes of death worldwide. Stroke is the inability of a focus to be fed in the brain due to clogged or bleeding of the vessels feeding the brain. Because early stroke treatment and diagnosis are related to a favorable patient outcome, time is a critical aspect of successful stroke treatment. In this chapter, we examine the stroke classification from Brain Stroke CT Dataset, with deep learning architectures. In the experimental study, a total of 2501 brain stroke computed tomography (CT) images were used for testing and training. For this purpose, numerus widely known pretrained convolutional neural networks (CNNs) such as GoogleNet, AlexNet, VGG-16, VGG-19, and Residual CNN were used to classify brain stroke CT images as normal and as stroke. Several performance metrics such as accuracy (ACC), specificity (SPE), sensitivity (SEN), and F-score are used to evaluate the performances of the classifier. The best classification results are achieved by VGG-19 with ACC 97.06%, SEN 97.41%, SPE 96.49%, and F-score 96.95%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.