Abstract

A two-port network is an electrical device that has two ports, one that serves to connect to an energy source (e.g., an oscillator) and one that serves to connect to a load. RF and microwave range test equipment is not capable of measuring the voltages and currents of networks. For the given range, power in inputs (or outputs) of networks is a more convenient characteristic to measure. In order to account for the phase relationships, it is necessary to think of power as the product of complex values of current and voltage. This chapter determines the relationship between the matrix coefficients that further helps in determining the main electrical characteristics of coupled lines based on the discussed physical meaning of matrix coefficients that are important while discussing analysis and synthesis of directional couplers, dividers, combiners, and filters. An additional advantage of the transfer matrix is revealed in cascaded structures, where the matrix of the cascaded connection can be determined by simply multiplying the transfer matrices of its components. The disadvantage of using wave matrices is that there is no information about input structure and processes because the matrix describes the characteristics of outside parameters only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.