Abstract

The lead-acid battery represents the oldest rechargeable battery technology. Lead-acid batteries can be found in a wide variety of applications, including small-scale power storage such as UPS systems, starting, lighting, and ignition power sources for automobiles, along with large, grid-scale power systems. While inexpensive when compared to competing battery technologies, lead-acid cells have a significantly lower power density and higher weight, along with a lower cycle life. Recently, significant improvements in the cycle life of lead-acid batteries have been achieved through the incorporation of carbon into the negative plate, either as a direct addition to the negative active mass or as an electrochemical supercapacitor. Carbon modification has provided new life to aging lead-acid battery technology, enabling its use in hybrid vehicles as well as stationary storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.