Abstract

Efficient energy storage systems are increasingly needed due to advances in portable electronics and transport vehicles, with lithium-ion batteries standing out among the most suitable energy storage systems for a large variety of applications. In lithium-ion batteries, the porous separator membrane plays a relevant role as it is placed between the electrodes, serves as a charge transfer medium, and affects the cycle behavior. Typically, porous separator membranes are comprised of a synthetic polymeric matrix embedded in the electrolyte solution. The present chapter focus on recent advances in synthetic polymers for porous separation membranes as well as on the techniques for membrane preparation and physicochemical characterization. The main challenges to improve the synthetic polymer performance for battery separator membrane applications are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.