Abstract
In the process of aerospace service, circular mesh antennas generate large nonlinear vibrations under an alternating thermal load. In this paper, the Smale horseshoe and Shilnikov-type multi-pulse chaotic motions of the six-dimensional non-autonomous system for circular mesh antennas are first investigated. The Poincare map is generalized and applied to the six-dimensional non-autonomous system to analyze the existence of Smale horseshoe chaos. Based on the topological horseshoe theory, the three-dimensional solid torus structure is mapped into a logarithmic spiral structure, and the original structure appears to expand in two directions and contract in one direction. There exists chaos in the sense of a Smale horseshoe. The nonlinear equations of the circular mesh antenna under the conditions of the unperturbed and perturbed situations are analyzed, respectively. For the perturbation analysis of the six-dimensional non-autonomous system, the energy difference function is calculated. The transverse zero point of the energy difference function satisfies the non-degenerate conditions, which indicates that the system exists Shilnikov-type multi-pulse chaotic motions. In summary, the researches have verified the existence of chaotic motion in the six-dimensional non-autonomous system for the circular mesh antenna.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have