Abstract
Abstract The proof that an attractor is chaotic is not trivial. A single-scroll attractor in the Chen system with time delay is investigated through both theory and simulation. The Chen system with time delay is infinite dimensional parameterized by the time delay τ. The detailed procedure operations for finding topological horseshoe in the delay differential equation are different from that one in ordinary differential equation. We show the existence of chaos by using both the topological horseshoe theory and its corollary, and the Smale horseshoe construction if the geometry of the attractor on the 2D plane section satisfies certain conditions. This paper presents both methods for establishing the presence of the horseshoe in a Chen system with time delay. In the first method, we select two quadrilaterals in the 2D transversal section, and calculate the relationship of the quadrilaterals under the map. In the second method, we select quadrilaterals in the neighborhood of a short unstable periodic orbit in the section and obtain the approximate location of the quadrilaterals under the map, yielding the Smale horseshoe. By using the above two methods, the geometrical expansion of the quadrilaterals under the map satisfies the Topological Horseshoe Corollary and also the Smale horseshoe construction, thus showing that the time-delayed single-scroll attractor is indeed chaotic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.