Abstract

We study, using functional renormalization, two copies of an elastic system pinned by mutually correlated random potentials. Short scale decorrelation depends on a nontrivial boundary layer regime with (possibly multiple) chaos exponents. Large scale mutual displacement correlations behave as [x - x'](2zeta-mu), mu proportional to the difference between Flory (or mean field) and exact roughness exponents zeta. For short range disorder mu>0 and small; e.g., for random bond interfaces mu=5zeta-epsilon, epsilon=4-d, and mu=epsilon{[(2pi)(2)/36]-1} for the one component Bragg glass. Random field (i.e., long range) disorder exhibits finite residual correlations (no chaos mu=0) described by new functional renormalization fixed points. Temperature and dynamic chaos (depinning) are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.