Abstract
In this paper, we numerically study the effect of channel block on the spiking temporal coherence and spatial synchronization on Hodgkin–Huxley (HH) neuron networks. It is found that under sodium CB the spike coherence is badly reduced, and the synchronization can, depending on the network randomness (the fraction of random shortcuts), be either enhanced or reduced, while, under potassium CB, the spike coherence can be enhanced but the synchronization is reduced. Interestingly, for certain networks of relatively large randomness, the neuron firings can achieve the best temporal coherence at an optimal potassium CB. These results show that under certain conditions channel blocking can increase and optimize the spike coherence and the synchronization on the complex HH neuron networks, whereby the neurons would exhibit a better and the best sub-threshold signal encoding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.