Abstract

We choose a random network of Hodgkin–Huxley (HH) neurons with exponential synaptic conductance as a study of accelerating the simulation of networks of spiking neurons on an FPGA. Focused on the conductance-based HH (COBAHH) benchmark, we execute the benchmark on a general-purpose simulator for spiking neural networks, identify a computationally intensive kernel in the generated C++ code, convert the kernel to a portable OpenCL kernel, and describe the kernel optimizations which can reduce the resource utilizations and improve the kernel performance. We evaluate the kernel on an Intel Arria 10 based FPGA platform, an Intel Xeon 16-core CPU, and an NVIDIA Tesla P100 GPU. FPGAs are promising for the simulation of spiking neuron network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.