Abstract

Abstract Anthropogenic climate change is likely to be felt most acutely through changes in the frequency of extreme meteorological events. However, quantifying the impact of climate change on these events is a challenge because the core of the climate change science relies on general circulation models to detail future climate projections, and many of these extreme events occur on small scales that are not resolved by climate models. This note describes an attempt to infer the impact of climate change on one particular type of extreme meteorological event—the cool-season tornadoes of southern Australia. The Australian Bureau of Meteorology predicts threat areas for cool-season tornadoes using fine-resolution numerical weather prediction model output to define areas where the buoyancy of a near-surface air parcel and the vertical wind shear each exceed specified thresholds. The diagnostic has been successfully adapted to coarser-resolution climate models and applied to simulations of the current climate, as well as future projections of the climate over southern Australia. Simulations of the late twentieth century are used to validate the models’ ability to reproduce the climatology of the risk of cool-season tornado formation by comparing these with similar computations based on historical reanalyses. Model biases are overcome by setting model specific thresholds to define the cool-season tornado risk. The diagnostic, applied to simulations of the twenty-first century, is then used to quantify the impact of the projected climate change on cool-season tornado risk. The sign of the response is consistent across all models: a decrease of the risk of formation during the twenty-first century is projected, driven by the thermodynamical response. The thermal response is modulated by the dynamical response, which varies between models. The projected decrease in tornadoes risk during the cool season is consistent with the projection of positive southern annular mode trends and the known influence of this mode of variability on interannual to intraseasonal time-scale variations in cool-season tornado occurrence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.