Abstract

Structural equation modeling (SEM) and fMRI were used to test whether changes in the regional activity are accompanied by changes in the inter-regional connectivity as motor practice progresses. Ten healthy subjects were trained to perform finger movement task daily for 4 weeks. Three sessions of fMRI images were acquired within 4 weeks. The changes in inter-regional connectivity were evaluated by measuring the effective connectivity between the primary motor area (M1), supplementary motor area (SMA), dorsal premotor cortex (PMd), basal ganglia (BG), cerebellum (CB), and posterior ventrolateral prefrontal cortex (pVLPFC). The regional activities in M1 and SMA increased from pre-training to week 2 and decreased from week 2 to week 4. The inter-regional connectivity generally increased in strength (with SEM path coefficients becoming more positive or negative) as practice progressed. The increases in the strength of the inter-regional connectivity may reflect long-term reorganization of the skilled motor network. We suggest that the performance gain was achieved by dynamically tuning the inter-regional connectivity in the motor network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.