Abstract

The Chinese mitten crab (Eriocheir sinensis) has significant economic potential in both the Chinese domestic and global markets. The hemolymph microbiota is known to play a critical role in regulating physiological and biochemical functions in crustaceans. However, the study of the hemolymph microbiota of E. sinensis in response to infections has not been undertaken. In this study, changes in the composition and function of the hemolymph microbiota in E. sinensis infected with either Staphylococcus aureus (Sa) or Aeromonas hydrophila (Ah) were investigated using 16S rRNA sequencing, with a phosphate buffer saline (PBS) injection serving as the control. Results showed that the dominant hemolymph microbiota of E. sinensis were Proteobacteria, Bacteroidota, and Firmicutes. The relative abundance of the phyla Firmicutes, Bdellovibrionota, and Myxococcota was significantly reduced in both Sa and Ah groups compared to the PBS group. At the genus level, compared to the PBS group, a significant increase in the abundance of Flavobacterium and Aeromonas was found in both Ah and Sa groups. The analysis of the functional profile showed that pathways related to 'cell growth and death', 'metabolism of terpenoids and polyketides', 'cancers', 'lipid metabolism', 'neurodegenerative diseases', 'metabolism of other amino acids', 'xenobiotics biodegradation and metabolism', and 'circulatory system and endocrine system' were predominant in the Ah group. Meanwhile, pathways related to 'metabolism or genetic information progressing', such as 'translation', 'metabolic diseases', and 'cellular processes and signaling', were enriched in the Sa group. This study revealed the effects of pathogens (S. aureus or A. hydrophila) on the maintenance of the hemolymph microbiota in E. sinensis. It shed light on the mechanisms employed by the hemolymph microbiota of E. sinensis under pathogen stimulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.