Abstract
Changes in net ecosystem productivity (NEP) in terrestrial ecosystems in response to climate warming and land cover changes have been of great concern. In this study, we applied the normalized difference vegetation index (NDVI), average temperature, and sunshine hours to drive the C-FIX model and to simulate the regional NEP in China from 2000 to 2019. We also analyzed the spatial patterns and the spatiotemporal variation characteristics of the NEP of terrestrial ecosystems and discussed their main influencing factors. The results showed that (1) the annual average NEP of terrestrial ecosystems in China from 2000 to 2019 was 1.08 PgC, exhibiting a highly significant increasing trend with a rate of change of 0.83 PgC/10 y. The terrestrial ecosystems in China remained as carbon sinks from 2000 to 2019, and the carbon sink capacity increased significantly. The NEP of the terrestrial ecosystem increased by 65% during 2015-2019 compared to 2000-2004 (2) There was spatial differences in the NEP distribution of the terrestrial ecosystems in China from 2000-2019. Taking the line along the Daxinganling-Yin Mountains-Helan Mountains-Transverse Range as the boundary, the NEP was significantly higher in the eastern part than in the western part. Among them, the NEP was positive (carbon sink) in northeastern, central, and southern China, and negative (carbon source) in parts of northwestern China and the Tibet Autonomous Region. The spatial variation of NEP in terrestrial ecosystems increased from 2000 to 2009. The areas with a significant increase accounted for 45.85% and were mainly located in the central and southwestern regions. (3) The simulation results revealed that vegetation changes and CO2 concentration changes both contributed to the increase in the NEP in China, contributing 85.96% and 36.84%, respectively. The vegetation changes were the main factor causing the increase in the NEP. The main contribution of this study is to further quantify the NEP of terrestrial ecosystems in China and identify the influencing factors that caused these changes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have