Abstract

The simulation of internal-loop airlift reactors is challenging because complex meso-scale structures exist in different sections of the reactor, separated by the draft tube. This paper reports on the computational fluid dynamics (CFD) simulation of internal-loop airlift reactors using a new drag model derived from the dual-bubble-size (DBS) model, an extended energy-minimization multi-scale (EMMS) approach for gas–liquid flows. Compared with the traditional Schiller–Naumann (S–N) correlation, the new model improves the simulation of gas holdup in the riser and downcomer significantly. In particular, gas holdup and circulation of two-phase flow can be modeled successfully using the new model, whereas traditional drag models such as the S–N correlation show an absence of gas in the downcomer. The simulation demonstrates the advantage and potential of this new model for internal-loop airlift reactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.